

Ginete Technologies Private Limited || A-130, Sector-63, Noida - 201301 India
Website: www.ginete.in || E-mail: info@ginete.in || T. +91-9818389652

BetDeEx Smart Contract Audit

Overview

This Audit Report highlights the overall security of BetDeEx Smart Contracts. Ginete

Technologies performed a security review of the BetDeEx Smart Contracts, at the request of

the EraSwap team. The version used for this report is commit:

25c1dada8a8f89e96fa6e57f226be6b7dbaea36e

Methodology

The audit has been performed in the following steps:

1. Gaining an understanding of the contract’s intended purpose by reading the available

documentation.

2. Automated scanning of the contract with static code analysis tools for security

vulnerabilities and use of best practice guidelines.

3. Manual line by line analysis of the contract's source code for security vulnerabilities

and use of best practice guidelines, including but not limited to: re-entrancy analysis,

race condition analysis, front-running issues and transaction order dependencies,

timestamp dependencies, under- / overflow issues, function visibility issues, possible

denial of service attacks, and storage layout vulnerabilities.

4. Report preparation.

Security Level References

Every issue in this report was assigned a severity level from the following:

1. High Severity issues will probably bring problems and should be fixed.

2. Medium Severity issues could potentially bring problems and should eventually be

fixed.

3. Low Severity issues are minor details and warnings that can remain unfixed but would

be better fixed at some point in the future.

http://www.ginete.in/
mailto:info@ginete.in

Ginete Technologies Private Limited || A-130, Sector-63, Noida - 201301 India
Website: www.ginete.in || E-mail: info@ginete.in || T. +91-9818389652

Scope of this Audit

The scope of the audit, conducted by Ginete Technologies, was restricted to:

1. The git repository located at:

https://github.com/zemse/betdeex/

2. BetDeEx.sol Smart contract at commit

25c1dada8a8f89e96fa6e57f226be6b7dbaea36e

Automatic Auditing Tool Outputs

1. Slither

Slither, is another static analysis tool from Trail of Bits. It includes aids for contract summaries,

which can be helpful for making a mental model of the contract and rechecking assumptions.

http://www.ginete.in/
mailto:info@ginete.in
https://github.com/

Ginete Technologies Private Limited || A-130, Sector-63, Noida - 201301 India
Website: www.ginete.in || E-mail: info@ginete.in || T. +91-9818389652

2. Solhint

This is an open source tool for linting solidity code. This tool provides both security and style

guide validations.

http://www.ginete.in/
mailto:info@ginete.in

Ginete Technologies Private Limited || A-130, Sector-63, Noida - 201301 India
Website: www.ginete.in || E-mail: info@ginete.in || T. +91-9818389652

3. Truffle Compilation Verification

4. Truffle Migration and Gas Estimation

http://www.ginete.in/
mailto:info@ginete.in

Ginete Technologies Private Limited || A-130, Sector-63, Noida - 201301 India
Website: www.ginete.in || E-mail: info@ginete.in || T. +91-9818389652

Contract Deployment Testing

The contracts have been deployed and tested at the following addresses on the Ropsten

Testnet:

• ESContract.sol at 0xd7bf79aed5d06a7282b02805f15667aa6a1eaaf6

• BetDeEx.sol at 0x98ff29bccc1d89d648e990cd4e80c5050aa5cf50

High Severity

All the instances of high severity instances have been resolved and now the code doesn’t

seem to have any critical severity bug.

Medium Severity

All the instances of medium severity instances has been resolved and now the code doesn’t
seems to have any bug.

Low Severity

All the instances of low severity instances, warnings, best practices have been resolved and

now the code doesn’t seem to have the warnings, bugs.

Possible Issues

1. Racing Condition

All transactions in Ethereum are run serially. Just one after another. Everything your

transaction executes, including calling from one contract to another, happens within

the context of your transaction and nothing else runs until your contract is done.

2. Changing of values inside a function

The require conditions in conjunction with the modifiers setup with the function

definition prevent unintended access so that the function cannot be accessed by

someone else.

http://www.ginete.in/
mailto:info@ginete.in

Ginete Technologies Private Limited || A-130, Sector-63, Noida - 201301 India
Website: www.ginete.in || E-mail: info@ginete.in || T. +91-9818389652

3. Cross-Racing Condition

Race conditions should not be a concern. You can call balanceOf() on another

contract, put the result in a local variable, and use it with no worries that the balance

in the other contract will change before you're done.

4. Serial Function Calls

Continuous function calls one after the other do not affect the state as the Ethereum

Virtual Machine keeps track of all the changes and verifies the validity of the

transactions happening.

5. Conditional Access using require

The require conditions in conjunction with the modifiers setup with the function

definition prevent unintended access so that the function cannot be accessed by

someone else.

6. Ether Lock

It has been verified that the transaction is reverted if any ether is sent to contract

unintentionally and the modifiers prevent any ethers being transferred inside the

contract from anyone else.

http://www.ginete.in/
mailto:info@ginete.in

Ginete Technologies Private Limited || A-130, Sector-63, Noida - 201301 India
Website: www.ginete.in || E-mail: info@ginete.in || T. +91-9818389652

Summary of the Audit

The contract seems to have implement the best security practices. It is good to use to

OpenZeppelin framework wherever required and the contract is using it very efficiently

where required. The contract stores the funds safely and transact safely wherever needed.

The contracts are written keeping in mind the best security practices of the solidity and it is

using the pull mechanism of the funds which is the best way to avoid any attacks and the

misuse of the funds by the attackers. The contract is also using the SafeMath library of

OpenZeppelin which avoids the underflows and overflows. All the vulnerabilities found in

the previous version of the audit has been fixed by the team.

Since the contract is free from any security vulnerability and external attacks, the contract is

Good to Deploy over mainnet.

http://www.ginete.in/
mailto:info@ginete.in

